MAE 7340
ANALYSIS OF TURBULENT FLOWS
Fall 2013

Instructor: Professor S.B. Pope
 254 Upson Hall, 5-4314
 s.b.pope@cornell.edu

Assistant Instructor:
 Dr. Jeonglae Kim
 106A Rhodes Hall
 jk984@cornell.edu

Website: pope.mae.cornell.edu/7340

Lectures: MWF 11:15–12:05, Upson 207

Recitation: MW 1:25–2:15, Upson 207
 See web site for a detailed schedule

The course is divided into 7 two-week units. For each unit there is a homework assignment, many of which will include computational projects. Typically, these assignments will be available during the first week of the unit, and are usually due by 1:25 p.m. on the second Monday following the end of the unit. No late homework can be accepted, because the homework will be discussed in the recitation immediately following the deadline.

ACADEMIC INTEGRITY

Each student in this course is expected to abide by the Cornell University Code of Academic Integrity. Any work submitted by a student in this course for academic credit will be the student’s own work. Collaboration and discussion with other students is encouraged for not-for-credit exercises.
COURSE OUTLINE

<table>
<thead>
<tr>
<th>Unit</th>
<th>Weeks</th>
<th>Topic</th>
<th>Number of lectures</th>
<th>Readings from Turbulent Flows (sections in brackets not covered in lectures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Introduction</td>
<td>1</td>
<td>1, (A, 2, B)</td>
</tr>
<tr>
<td>1</td>
<td>1-2</td>
<td>Statistical Description of Turbulence</td>
<td>5</td>
<td>(C), 3.1-3.5, (D,E), 3.6-3.8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Mean Flow Equations</td>
<td>2</td>
<td>4.1-4.2, (4.3), 4.4</td>
</tr>
<tr>
<td>2</td>
<td>3-4</td>
<td>Free Shear Flows</td>
<td>4</td>
<td>5.1-5.3, (5.4-5.5)</td>
</tr>
<tr>
<td>3</td>
<td>5-6</td>
<td>The Scales of Turbulent Motion</td>
<td>4</td>
<td>6.1-6.2, (6.3-6.5), 6.6-6.7</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Direct Numerical Simulation (DNS)</td>
<td>2</td>
<td>8, (F), 9.1, (9.2), 9.3</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>Wall Flows</td>
<td>2</td>
<td>7.1, (7.2), 7.3, (7.4)</td>
</tr>
<tr>
<td>4</td>
<td>7-8</td>
<td>Turbulent Viscosity Models</td>
<td>4</td>
<td>(10.1-10.3), 10.4, (10.5)</td>
</tr>
<tr>
<td>5</td>
<td>9-10</td>
<td>Reynolds-Stress Models</td>
<td>6</td>
<td>11.1-11.6, (11.7), 11.8-11.10</td>
</tr>
<tr>
<td>6</td>
<td>11-12</td>
<td>PDF Methods</td>
<td>6</td>
<td>12.1, H, (I), 12.2, J, 12.3-12.6, (12.7), 12.8</td>
</tr>
</tbody>
</table>
READING

Text:

(corrections pope.mae.cornell.edu/TurbulentFlows)

Fluid Mechanics:

Turbulence – classic texts:

A.A. Townsend, *The Structure of Turbulent Shear Flow*, CUP, 1976

Turbulence – recent texts:

Stochastic Processes: