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rigwre 11.1: ' T'he Lumley triangle on the plane of the invariants £ and
n of the Reynolds-stress anisotropy tensor. The lines and vertices
correspond to special states (see Table 11.1). Circles: from DNS
of channel flow (Kim et al. 1987). Squares: from experiments on a
turbulent mixing layer (Bell and Mehta 1990). 1C; one-component;
2C, two-component.



CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS

Turbulent Flows

Stephen B. Pope
Cambridge University Press, 2000

(©Stephen B. Pope 2000

TR

/

-1/6 0 1/6 1/3

Figure 11.2: ' 1Tajectories on the £&-n plane given by the model of Sarkar
and Speziale (1990) (Egs. 11.51 and 11.57).
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rigure 11.3: ' The Lumley triangle showing trajectories of three types:
(a) violates realizability; (b) satisfies weak realizability; (c) satisfies
strong realizability. (Note: other types of trajectories are possible.)
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Figure 11.4: Sketch of trajectories (A and B) on the &-n plane for two
experiments (or DNS) in which the initial spectra are different,
but the initial values of b are the same. A Reynolds-stress model
yields a unique trajectory from initial point O.
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Figne 115: Crests of the fields ¢(x,t) evolving by D¢/Dt = 0 (a)
initial condition, pe™** k¢ = k5 > 0, K5 = 0 (b) after plane

straining (S7; = —Ss > 0) (c¢) after shearing O(U;)/dzy > 0.
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Figwe 11.6: 1Tajectories of the unit wavevector €(t) on the unit sphere
from random initial conditions for (a) axisymmetric contraction (b)
axisymmetric expansion (c¢) plane strain (d) shear. The é; direc-
tion is horizontal, the e direction is vertical, and the es direction
is into the page. The symbols mark the ends of the trajectories
after distortion.
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Figure 11.7: SKetch of the unit sphere showing the unit wavevector e(t).
The Fourier component of velocity (t) is orthogonal to €(t), and
so it is in the tangent plane of the unit sphere at é(t).
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Figure 11.8: Sketch of the unit sphere showing the unit wavevector e(t).
The Fourier component of velocity (t) is orthogonal to €(t), and
so it is in the tangent plane of the unit sphere at é(t).
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Figwe 119: Evolution of (u3) (on a log scale) for axisymmetric con-
traction rapid distortion (solid line). The dashed line is 1 exp(Syt)
indicating the asymptotic growth rate.
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Figuwre 11.10: Fovolution of Reynolds stresses for axisymmetric expan-
sion rapid distortion. The dashed lines show the asymptotic
growth as exp(Syt).
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Figure 11.11: Fivolution of Reynolds stresses for plane strain rapid dis-
tortion. The dashed line is 1 exp(Syt).
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Figure 11.12: EVolution of Reynolds-stress anisotropies for shear rapid
distortion.
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Figure 11.13: Fovolution of the Reynolds-stress invariants for shear rapid
distortion. Starting from the origin (corresponding to isotropy),
each symbol gives the state after an amount of shear St = 0.5.
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Figure 11.14: Fovolution of the turbulent kinetic energy for shear rapid
distortion.
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Figure 11.15: Reynolds-stress anisotropies in homogeneous shear flow.
Comparison of LRR-IP model calculations (lines) with the DNS
data of Rogers Moin (1987) (symbols): e, bi1; o, bio; squares, bog;
triangles, bs3s3.
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rigure 11.16: Kinetic energy budget in the temporal mixing layer from
the DNS data of Rogers and Moin (1994): (a) across the whole flow
(b) an expanded view of the edge of the layer. The contributions
to the budget are: production P; dissipation —e; rate of change
—dk /dt; turbulent transport; pressure transport (dashed line). All
quantities are normalized by the velocity difference and the layer
thickness § (see Fig. 5.21).
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Figwe 11.17. ' Lurbulent viscosity against y* for channel flow at Re =
13,750. Symbols, DNS data of Kim et al. (1987); solid line,
0.09k? /e; dashed line, 0.22(v?)k /e.
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Figure 11.18: Normalized dissipation components in a turbulent bound-
ary layer at Rey = 1,410: symbols, DNS data of Spalart (1988);
dashed lines, Rotta’s model, Eq. (11.167); solid lines, Eq. (11.169).
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Figure 11.19: Oketch of the point x” and its image x”, showing the

vectors ' and r” that appear in the Green’s function solutions,
Eqs. (11.181) and (11.182).
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Figwre 11.20: Reynolds-stress anisotropies as functions of P /e accord-
ing to the LRR-IP algebraic stress model. The dashed line shows
b12 according to the k- model.
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Figure 11.21: The value of C), as a function of P /e given by the LRR-IP
algebraic stress model (Eq. 11.220).
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Figwe 11.22. Contour plots of (a) €, = —GW and (b) —G®@, for the
LRR-IP nonlinear viscosity model (Eqs. 11.230-11.232).



