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Figure 11.1: The Lumley triangle on the plane of the invariants ξ and

η of the Reynolds-stress anisotropy tensor. The lines and vertices

correspond to special states (see Table 11.1). Circles: from DNS

of channel flow (Kim et al. 1987). Squares: from experiments on a

turbulent mixing layer (Bell and Mehta 1990). 1C, one-component;

2C, two-component.
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Figure 11.2: Trajectories on the ξ-η plane given by the model of Sarkar

and Speziale (1990) (Eqs. 11.51 and 11.57).
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Figure 11.3: The Lumley triangle showing trajectories of three types:

(a) violates realizability; (b) satisfies weak realizability; (c) satisfies

strong realizability. (Note: other types of trajectories are possible.)
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Figure 11.4: Sketch of trajectories (A and B) on the ξ-η plane for two

experiments (or DNS) in which the initial spectra are different,

but the initial values of b are the same. A Reynolds-stress model

yields a unique trajectory from initial point O.
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Figure 11.5: Crests of the fields φ(x, t) evolving by D̄φ/D̄t = 0 (a)

initial condition, φeiκ
o·x, κo1 = κo2 > 0, κo3 = 0 (b) after plane

straining (S̄11 = −S̄22 > 0) (c) after shearing ∂〈U1〉/∂x2 > 0.
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Figure 11.6: Trajectories of the unit wavevector ê(t) on the unit sphere

from random initial conditions for (a) axisymmetric contraction (b)

axisymmetric expansion (c) plane strain (d) shear. The ê1 direc-

tion is horizontal, the ê2 direction is vertical, and the ê3 direction

is into the page. The symbols mark the ends of the trajectories

after distortion.
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Figure 11.7: Sketch of the unit sphere showing the unit wavevector ê(t).

The Fourier component of velocity û(t) is orthogonal to ê(t), and

so it is in the tangent plane of the unit sphere at ê(t).
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Figure 11.8: Sketch of the unit sphere showing the unit wavevector ê(t).

The Fourier component of velocity û(t) is orthogonal to ê(t), and

so it is in the tangent plane of the unit sphere at ê(t).
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Figure 11.9: Evolution of 〈u2
2〉 (on a log scale) for axisymmetric con-

traction rapid distortion (solid line). The dashed line is 1
2 exp(Sλt)

indicating the asymptotic growth rate.
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Figure 11.10: Evolution of Reynolds stresses for axisymmetric expan-

sion rapid distortion. The dashed lines show the asymptotic

growth as exp(Sλt).
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Figure 11.11: Evolution of Reynolds stresses for plane strain rapid dis-

tortion. The dashed line is 1
2 exp(Sλt).
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Figure 11.12: Evolution of Reynolds-stress anisotropies for shear rapid

distortion.
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Figure 11.13: Evolution of the Reynolds-stress invariants for shear rapid

distortion. Starting from the origin (corresponding to isotropy),

each symbol gives the state after an amount of shear St = 0.5.
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Figure 11.14: Evolution of the turbulent kinetic energy for shear rapid

distortion.
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Figure 11.15: Reynolds-stress anisotropies in homogeneous shear flow.

Comparison of LRR-IP model calculations (lines) with the DNS

data of Rogers Moin (1987) (symbols): •, b11; ◦, b12; squares, b22;

triangles, b33.
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Figure 11.16: Kinetic energy budget in the temporal mixing layer from

the DNS data of Rogers and Moin (1994): (a) across the whole flow

(b) an expanded view of the edge of the layer. The contributions

to the budget are: production P ; dissipation −ε; rate of change

−dk/dt; turbulent transport; pressure transport (dashed line). All

quantities are normalized by the velocity difference and the layer

thickness δ (see Fig. 5.21).
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Figure 11.17: Turbulent viscosity against y+ for channel flow at Re =

13, 750. Symbols, DNS data of Kim et al. (1987); solid line,

0.09k2/ε; dashed line, 0.22〈v2〉k/ε.
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Figure 11.18: Normalized dissipation components in a turbulent bound-

ary layer at Reθ = 1, 410: symbols, DNS data of Spalart (1988);

dashed lines, Rotta’s model, Eq. (11.167); solid lines, Eq. (11.169).
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Figure 11.19: Sketch of the point x
′ and its image x

′′, showing the

vectors r
′ and r

′′ that appear in the Green’s function solutions,

Eqs. (11.181) and (11.182).
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Figure 11.20: Reynolds-stress anisotropies as functions of P/ε accord-

ing to the LRR-IP algebraic stress model. The dashed line shows

b12 according to the k-ε model.
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Figure 11.21: The value of Cµ as a function of P/ε given by the LRR-IP

algebraic stress model (Eq. 11.220).

21



CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS

Turbulent Flows

Stephen B. Pope
Cambridge University Press, 2000

c©Stephen B. Pope 2000

0 5 10 15 20
0

5

10

15

20

0.002

0.0100.0200.050

0.005

Ωk/ε (b)

Sk/ε
0 5 10 15 20

0

5

10

15

20

0.03

0.06

0.090.120.18

Sk/ε

Ωk/ε (a)

Figure 11.22: Contour plots of (a) Cµ = −G(1), and (b) −G(2), for the

LRR-IP nonlinear viscosity model (Eqs. 11.230–11.232).
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