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Figure 5.1: Sketch of a round jet experiment, showing the polar-

cylindrical coordinate system employed.

1



CHAPTER 5: FREE SHEAR FLOWS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000

0 10 20
0.0

0.1

0.2

〈U〉/UJ

x/d = 30

x/d = 60

x/d = 100

r/d

Figure 5.2: Radial profiles of mean axial velocity in a turbulent round

jet, Re = 95, 500. The dashed lines indicate the half-width, r 1
2
(x),

of the profiles. (Adapted from the data of Hussein et al. (1994).)
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Figure 5.3: Mean axial velocity against radial distance in a turbulent

round jet, Re ≈ 105; measurements of Wygnanski and Fiedler

(1969). Symbols: ◦, x/d = 40; 4, 50; ¤, 60; ♦, 75; •, 97.5.
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Figure 5.4: Centerline mean velocity variation with axial distance in a

turbulent round jet, Re = 95, 500: symbols, experimental data of

Hussein et al. (1994), line—Eq. (5.6) with x0/d = 4, B = 5.8.
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Figure 5.5: Self-similar profile of the mean axial velocity in the self-

similar round jet. Curve fit to the LDA data of Hussein et al.

(1994).
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Figure 5.6: Mean lateral velocity in the self-similar round jet. From

the LDA data of Hussein et al. (1994).
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Figure 5.7: Profiles of Reynolds stresses in the self-similar round jet.

Curve fit to the LDA data of Hussein et al. (1994).
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Figure 5.8: Profile of the local turbulence intensity—〈u2〉
1
2/〈U〉—in

the self-similar round jet. From the curve fit to the experimental

data of Hussein et al. (1994).
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Figure 5.9: Profiles of 〈uv〉/k and the u-v correlation coefficient ρuv in

the self-similar round jet. From the curve fit to the experimental

data of Hussein et al. (1994).
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Figure 5.10: Normalized turbulent diffusivity ν̂T (Eq. (5.34)) in the

self-similar round jet. From the curve fit to the experimental data

of Hussein et al. (1994).
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Figure 5.11: Profile of the lengthscale defined by (Eq. (5.35)) in the

self-similar round jet. From the curve fit to the experimental data

of Hussein et al. (1994).
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Figure 5.12: Self-similar profiles of the integral lengthscales in the tur-

bulent round jet. From Wygnanski and Fiedler (1969).
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Figure 5.13: Longitudinal autocorrelation of the axial velocity in the

self-similar round jet. From Wygnanski and Fiedler (1969).
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Figure 5.14: Sketch of plane two-dimensional shear flows showing the

characteristic flow width δ(x), the characteristic convective veloc-

ity Uc, and the characteristic velocity difference Us.
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Figure 5.15: Mean velocity profile in the self-similar round jet: solid

line, curve fit to the experimental data of Hussein et al. (1994);

dashed line, uniform turbulent viscosity solution (Eq. 5.82).
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Figure 5.16: Turbulent kinetic energy budget in the self-similar round

jet. Quantities are normalized by U0 and r1
2
. (From Panchapake-

san and Lumley (1993a).)
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Figure 5.21: Sketch of the mean velocity 〈U〉 against y, and of

the scaled mean velocity profile f (ξ), showing the definitions of

y0.1, y0.9 and δ.
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Figure 5.22: Scaled velocity profiles in a plane mixing layer. Symbols,

experimental data of Champagne et al. (1976); line, error-function

profile (Eq. (5.224)) shown for reference.
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Figure 5.23: Axial variation of y0.1, y0.5 and y0.95 in the plane mixing

layer, showing the linear spreading. Experimental data of Cham-

pagne et al. (1976).
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Figure 5.24: Scaled mean velocity profile in self-similar plane mixing

layers. Symbols, experiment of Bell and Mehta (1990) (U`/Uh =

0.6); solid line, DNS data for the temporal mixing layer (Rogers

and Moser 1994); dashed line error-function profile with width

chosen to match data in the center of the layer.

20



CHAPTER 5: FREE SHEAR FLOWS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000

–1 0 1
0.000

0.015

0.030

n

〈uiuj〉

Us
 2

〈u 2〉/Us
 2

〈v 2〉/Us
 2

–1 0 1

–0.015

0.000

0.015

n

〈w 2〉/Us
 2

〈uv〉/Us
 2

〈uiuj〉

Us
 2

Figure 5.25: Scaled Reynolds stress profiles in self-similar plane mixing

layers. Symbols, experiment of Bell and Mehta (1990) (U`/Uh =

0.6); solid line, DNS data for the temporal mixing layer (Rogers

and Moser 1994).
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Figure 5.26: Normalized velocity defect profile in the self-similar

plane wake. Solid line, from experimental data of Wygnanski

et al. (1986); dashed line, constant-turbulent-viscosity solution,

Eq. (5.240).
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Figure 5.27: Mean velocity deficit profiles in a self-similar axisymmetric

wake. Symbols, experimental data of Uberoi and Freymuth (1970);

line, constant-turbulent-viscosity solution f (ξ) = exp (−ξ2 ln 2)
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Figure 5.28: R.m.s. velocity profiles in a self-similar axisymmetric

wake. Experimental data of Uberoi and Freymuth (1970).
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Figure 5.29: Turbulent kinetic energy budget in a self-similar axisym-

metric wake. Experimental data of Uberoi and Freymuth (1970).
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Figure 5.30: Sketch of the mean velocity profile in homogeneous shear

flow.
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Figure 5.31: Reynolds stresses against axial distance in the homoge-

neous shear flow experiment of Tavoularis and Corrsin (1981): ©,

〈u2〉; ¤, 〈v2〉; 4, 〈w2〉.
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Figure 5.32: Sketch of a turbulence generating grid composed of bars

of diameter d, with mesh spacing M .
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Figure 5.33: Decay of Reynolds stresses in grid turbulence: squares

〈u2〉/U 2
0 ; circles 〈v

2〉/U 2
0 ; triangles k/U

2
0 ; lines, proportional to

(x/M)−1.3. (From Comte-Bellot and Corrsin (1966).)
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Figure 5.34: Normalized mean velocity deficit f (ξ) and scalar, ϕ(ξ) =

〈φ〉/〈φ〉y=0 in the self-similar plane wake. Symbols (solid f ,

open ϕ) experimental data of Fabris (1979); solid line, f (ξ) =

exp(−ξ2 ln 2); dashed line, ϕ(ξ) = exp(−ξ2σT ln 2) with σT = 0.7.
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Figure 5.35: Normalized r.m.s. scalar fluctuations in a round jet. From

the experimental data of Panchapakesan and Lumley (1993b).

31



CHAPTER 5: FREE SHEAR FLOWS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000

–0.02

0.02

0.01

0.00

–0.01

G
ai

n
L

os
s

r/r
1/2

0.0 1.0 2.0

Production

Mean-flow
convection

Turbulent
transport

Dissipation

Figure 5.36: Scalar variance budget in a round jet: terms in Eq. (5.281)

normalized by 〈φ〉y=0, Us and r1
2
. (From the experiment data of

Panchapakesan and Lumley (1993b).)
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Figure 5.37: Scalar-to-velocity timescale ratio in a round jet. (From

the experimental data of Panchapakesan and Lumley (1993b).)
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Figure 5.38: Normalized scalar variance on the axis of self-similar round

jets at different Reynolds numbers. Triangles, air jets (experiments

of Dowling and Dimotakis (1990); circles, water jets (experiments

of Miller (1991)). (From Miller (1991).)
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Figure 5.39: Sketch of the intermittency function vs. time in a free

shear flow (a) in the irrotational non-turbulent surroundings (b)

in the outer part of the intermittent region (c) in the inner part of

the intermittent region and (d) close to the center of the flow.
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Figure 5.40: Profile of the intermittency factor in the self-similar plane

wake. The mean scalar profile shown for comparison: yφ is the

half-width. From the experimental data of LaRue and Libby (1974,

1976).
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Figure 5.41: Comparison of unconditional and turbulent mean (a) and

r.m.s. (b) scalar profiles in the self-similar plane wake. From the

experimental data of LaRue and Libby (1974).
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Figure 5.42: Sketch of a turbulent round jet showing the viscous super-

layer, and the path of a fluid particle from a point in the quiescent

ambient, O, to the superlayer, E.
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Figure 5.43: Profiles of the intermittency factor γ, the unconditional

mean axial velocity 〈U〉 and the turbulent 〈U〉T and non-turbulent

〈U〉N conditional mean velocities in a self-similar mixing layer.

From the experimental data of Wygnanski and Fiedler (1970).
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Figure 5.44: Profiles of unconditional 〈u2〉, turbulent (u′T )
2 and non-

turbulent (u′N)
2 variances of axial velocity in a self-similar mix-

ing layer. From the experimental data of Wygnanski and Fiedler

(1970).
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Figure 5.45: Standardized PDF’s of (a) u, (b) v, (c) w and (d) φ in

homogeneous shear flow. Dashed lines are standardized Gaussians.

(From Tavoularis and Corrsin (1981).)
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Figure 5.46: Contour plots of joint PDF’s of standardized variables

measured in homogeneous shear flow: (a) u and v, (b) φ and v,

(c) u and φ. Contour values are 0.15, 0.10, 0.05 and 0.01. Dashed

lines are corresponding contours for joint-normal distributions with

the same correlation coefficients. (From Tavoularis and Corrsin

(1981).)
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Figure 5.47: PDF’s of a conserved passive scalar in the self-similar

temporal mixing layer at different lateral positions. From direct

numerical simulations of Rogers and Moser (1994).
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Figure 5.48: Profiles of unconditional (Sφ, Kφ) and conditional tur-

bulent (SφT , KφT ) skewness and kurtosis of a conserved passive

scalar in the self-similar plane wake. From the experimental data

of LaRue and Libby (1974).
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Figure 5.49: PDF’s of axial velocity in a temporal mixing layer. The

distance from the center of the layer is ξ = y/δ. The dashed line

corresponds to the freestream velocity Uh. From the DNS data of

Rogers and Moser (1994).
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Figure 5.50: Profiles of skewness (solid line) and kurtosis (dashed line)

in the self-similar round jet. From the experimental data of Wyg-

nanski and Fiedler (1969).
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Figure 5.51: Flow visualization of a plane mixing layer. Spark shadow

graph of a mixing layer between helium (upper) Uh = 10.1m/s

and nitrogen (lower) U` = 3.8m/s at a pressure of 8 atm. (From

Brown and Roshko (1974).)
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Figure 5.53: Mixing layer thickness, θ, against axial distance, x, for dif-

ferent forcing frequencies, f . (From Oster and Wygnanski (1982).)
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