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Using the pressure decomposition Eq.(11.10) with the Neumann bound-
ary condition Eq.(11.173) at y = 0, leads to
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Here, if zero-normal-gradient (inviscid) boundary conditions are applied for
p(r) and p(s) as described bellow Eq.(11.173), the first two terms drop. This
leads, together with Eq.(11.174), to a boundary condition for the homoge-
neous part of the fluctuating pressure,
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An ansatz for p(h), which satisfies Eq.(2), is
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where C is a constant to be determined. Inserting Eq.(3) into the Laplace
equation ∇2p(h) = 0, given after Eq.(11.12), results in the two solutions
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With C2, the expected exponential decay with increasing y is obtained,
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