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The Navier-Stokes equations (Eq.2.35) are

DU

Dt
=
∂U

∂t
+ U · ∇U = −1

ρ
∇p+ ν∇2U. (1)

Hence, using Eq.2.65, the left-hand side can be re-expressed as

DU

Dt
=
∂U

∂t
+∇

(
1
2
U ·U

)
−U× ω, (2)

which yields the Stokes form of the Navier-Stokes equations when plugged
into eq. (1).

∂U

∂t
−U× ω +∇

(
1
2
U ·U +

p

ρ

)
= ν∇2U. (3)

Assuming steady, inviscid flow, eq. 3 can be simplified to

∇H = U× ω, (4)

where H is the Bernoulli integral defined in eq. (2.67).

a) Applying the operator U· to eq. 4 yields

U · ∇H = U · (U× ω) . (5)

The pseudovector U×ω is perpendicular to both U and ω due to the
properties of the cross product, and thus the scalar product with U is
equal to zero.

U · ∇H = 0. (6)

Eq. 6 implies that the gradient of the Bernoulli integral is perpendicular
to U, and hence its value does not change in the direction of U, i.e.
along streamlines.
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b) Following the same arguments as in a), applying the operator ω· to
eq. 4 yields

ω · ∇H = 0, (7)

and hence the value of H does not change along vortex lines either.

c) If the flow is irrotational, ω = 0 and eq. 4 reduces to

∇H = 0. (8)

Since its gradient is zero everywhere in the flow, the Bernoulli integral
must be a constant.
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