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We first show the relation between the material derivative of energy and
the advected material derivative of velocity:
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With this result, we may derive the next relation following from the
momentum equation
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Since the stress tensor is symmetric
Tij = Tji
we can express the right-hand-side of (3) as
ou; 1 ou;, 1 09oU; 1 0U;

" oe ~ 2 o =9, T3,

Switching the indices of the second summand yields
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Inserting this into (3) leads to
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The stress writes for a Newtonian fluid as

Tij = —POi; + 2pvS;;

Plugging this expression into (5) yields
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Recalling the definition of the rate of strain tensor S;:
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This simplifies (7) to
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By introducing
T, = Upip — 20,8,

we immediately obtain the final result
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