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We begin by using the Kárman-Howarth equation for the final period as,
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It is obvious that LHS of Eq.1 is only a function of t. Thus Eq. (6.93)
can only satisfy Kárman-Howarth equation in the case RHS is also only a
function of t. Inserting Eq. (6.93) into the RHS of Eq.1 yields,
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Thus Eq. (6.93) satisfies the Kárman-Howarth equation. We also note that,
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⇒ u′2(t) = C t−5/2

⇒ k(t) = C ′t−5/2 (3)

This work is licensed under the Creative Commons Attribution-

NonCommercial-ShareAlike License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/1.0 or send a letter to Cre-

ative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

2


