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In simple turbulent shear flow, the only non-zero mean velocity gradi-
ent is ∂ 〈Ui〉 /∂xj. Combining this knowledge with P ≡ −〈uiuj〉 ∂ 〈Ui〉 /∂xj
(Eq.5.133), the production rate of turbulent kinetic energy is given by

P ≡ −〈u1u2〉 ∂ 〈U1〉 /∂x2. (1)

Substituting the given expressions S = ∂ 〈U1〉 /∂x2 and α ≡ −〈u1u2〉 /k
in Sk/ε, and using Eq.(1) it is shown that
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where the numeric result is obtained by substituting the given values P/ε ≈ 1
and α ≈ 0.3.

By using the Kolmogorov timescale τη = (ν/ε)1/2 (Eq.6.3), Eq.(2) and
the definition of the turbulence Reynolds number ReL ≡ k1/2L/ν (Eq.6.59)
it is shown that
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When the relation between the turbulence and the Taylor-scale Reynolds

numbers Rλ =
(
20
3

ReL
)1/2

(Eq.6.64) is substituted in the result from Eq.(3),
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it is obtained that
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Using the definition of the length scale LS from Eq.(6.272), the solution
of Eq.(2) and the definition of the lengthscale L ≡ k3/2/ε characterizing the
large eddies, it is shown that

LS ≡ S−3/2ε1/2
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Finally, by substituting the result of Eq.(2) in the definition of the velocity
scale uS from Eq.(6.276), it is shown that

uS ≡ (ε/S)1/2

=

(
εαk

P
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k1/2 ≈ 1

2
k1/2. (6)
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