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Solution to Exercise 6.35
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In simple turbulent shear flow, the only non-zero mean velocity gradi-
ent is 0 (U;) /Oz;. Combining this knowledge with P = — (w;u;) 0 (U;) /0x;
(Eq.5.133), the production rate of turbulent kinetic energy is given by

P = — (uug) 0 (Uy) /0zs. (1)

Substituting the given expressions S = 9 (Uy) /0x2 and a = — (ujus) /k
in Sk/e, and using Eq.(1) it is shown that
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where the numeric result is obtained by substituting the given values P/e ~ 1
and o ~ 0.3.

By using the Kolmogorov timescale 7, = (v/e)'* (Eq.6.3), Eq.(2) and
the definition of the turbulence Reynolds number Re;, = k'/2L/v (Eq.6.59)
it is shown that
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When the relation between the turbulence and the Taylor-scale Reynolds
numbers Ry = (%ReL) i (Eq.6.64) is substituted in the result from Eq.(3),



it is obtained that
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Using the definition of the length scale Ls from Eq.(6.272), the solution
of Eq.(2) and the definition of the lengthscale L = k%2 /e characterizing the

large eddies, it is shown that
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Finally, by substituting the result
scale ug from Eq.(6.276), it is shown
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of Eq.(2) in the definition of the velocity
that
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