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In fully developed turbulent pipe flow, the mean temporal derivatives van-
ish and velocity statistics only depend on the radial coordinate. Hence,
Eq. (5.45) reduces to
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The radial momentum equation (5.47) then simplifies to
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Differentiating in the streamwise direction yields
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The axial momentum equation (5.46) simplifies to
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which, using integration by parts, can be integrated to
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where C is a constant of integration. At r = 0, symmetry implies that
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= 0, and hence C = νρ〈U〉, leading to
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At r = R, 〈uv〉 vanishes and thus
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