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Solution to Exercise 7.11
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In fully developed turbulent pipe flow, the mean temporal derivatives van-
ish and velocity statistics only depend on the radial coordinate. Hence,

Eq. (5.45) reduces to
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which, with the boundary condition (V'),_g, integrates to
(V)y=0.

The radial momentum equation (5.47) then simplifies to
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Differentiating in the streamwise direction yields
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The axial momentum equation (5.46) simplifies to
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which, using integration by parts, can be integrated to
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where C' is a constant of integration. At r = 0, symmetry implies that
) — 0, and hence C' = vp(U), leading to
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At r = R, (uv) vanishes and thus
dpﬂ = zypa<U> = oTw
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