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Since Re
(7.95)
= DŪ

ν
, we first have to determine the mean velocity. This can

be done by assuming that the log law holds over the entire cross-section and
integrating it by parts:
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From Eq. (7.104), we know that

1√
f

=
1√
8

Ū
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and thus
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RŪ
√
f√

8ν

)
− 3

2

)
+

B√
8

=
1√
8κ

ln

(
1√
32

Re
√
f

)
− 3− 2κB

2
√

8κ

=
1

2
√

2κ

(
ln
(

Re
√
f
)
− 1

2
ln(25)

)
− 3− 2κB

4
√

2κ

=
1

2
√

2κ

(
ln
(

Re
√
f
))
− 3 + 5 ln(2)− 2κB

4
√

2κ
.

Evaluating the coefficients for κ = 0.41, B = 5.2 and changing the base of
the logarithm yields

1√
f
≈ 1.99 log10

(
Re
√
f
)
− 0.95.
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