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Figure 7.1: Sketch of (a) channel flow (b) pipe flow and (c) flat-plate

boundary layer.
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Figure 7.2: Mean velocity profiles in fully-developed turbulent channel

flow from the DNS of Kim et al. (1987): dashed line, Re = 5, 600;

solid line, Re = 13, 750
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Figure 7.3: Profiles of the viscous shear stress, and the Reynolds shear

stress in turbulent channel flow: DNS data of Kim et al. (1987):

dashed line, Re = 5, 600; solid line, Re = 13, 750.
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Figure 7.4: Profiles of the fractional contributions of the viscous

and Reynolds stresses to the total stress. DNS data of Kim et

al. (1987): dashed lines, Re = 5, 600; solid lines, Re = 13, 750.
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Figure 7.5: Near-wall profiles of mean velocity from the DNS data of

Kim et al.: dashed line, Re = 5, 600; solid line, Re = 13, 750;

dot-dashed line, u+ = y+.
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Figure 7.6: Near-wall profiles of mean velocity: solid line, DNS data of

Kim et al.: Re = 13, 750; dot-dashed line, u+ = y+; dashed line,

the log law, Eqs. (7.43)–(7.44).
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Figure 7.7: Mean velocity profiles in fully-developed turbulent channel

flow measured by Wei and Willmarth (1989): ◦,Re0 = 2, 970; ¤,

Re0 = 14, 914; ∆, Re0 = 22, 776; ∇, Re0 = 39, 582; line, the log

law, Eqs. (7.43)–(7.44).
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Figure 7.9: Mean velocity defect in turbulent channel flow. Solid line,

DNS of Kim et al. (1987), Re = 13, 750; dashed line, log law,

Eqs. (7.43)–(7.44).
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Figure 7.10: Skin friction coefficient cf ≡ τw/(
1
2
ρU 2

0 ) against Reynolds

number (Re = 2Ūδ/ν) for channel flow: symbols, experimental

data compiled by Dean (1978); solid line, from Eq. (7.55); dashed

line, laminar friction law cf = 16/(3Re).
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Figure 7.11: Outer-to-inner lengthscale ratio δ/δν = Reτ for turbulent

channel flow as a function of Reynolds number (obtained from

Eq. 7.55).
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Figure 7.12: Outer-to-inner velocity scale ratios for turbulent channel

flow as functions of Reynolds number (obtained from Eq. 7.55):

solid line, Ū/uτ ; dashed line U0/uτ .
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Figure 7.13: Regions and layers in turbulent channel flow as functions

of Reynolds number.
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Figure 7.14: Reynolds stresses and kinetic energy normalized by friction

velocity against y+ from DNS of channel flow at Re = 13, 750 (Kim

et al. 1987).
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Figure 7.15: Profiles of Reynolds stresses normalized by turbulent ki-

netic energy from DNS of channel flow at Re = 13, 750 (Kim et

al. 1987).
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Figure 7.16: Profiles of the ratio of production to dissipation (P/ε),

normalized mean shear rate (Sk/ε), and shear stress correlation

coefficient (ρuv) from DNS of channel flow at Re = 13, 750 (Kim

et al. 1987).
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Figure 7.17: Profiles of Reynolds stresses and kinetic energy normalized

by friction velocity in the viscous wall region of turbulent channel

flow: DNS data of Kim et al. (1987) Re = 13, 750.
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Figure 7.18: Turbulent kinetic energy budget in the viscous wall region

of channel flow: terms in Eq. (7.64) normalized by viscous scales.

From the DNS data of Kim et al. (1987) Re = 13, 750.

17



CHAPTER 7: WALL FLOWS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000

100 101 102 103
0.0

0.5

1.0

1.5

2.0

2.5

3.0

y+

u’  v’,
uτ  uτ

Figure 7.19: Profiles of r.m.s. velocity measured in channel flow at dif-

ferent Reynolds numbers by Wei and Willmarth (1989). Open

symbols: u′/uτ = 〈u2〉
1
2/uτ ; ©,Re0 = 2, 970; ¤,Re0 =

14, 914; 4,Re0 = 22, 776; 5,Re0 = 39, 582. Solid symbols:

v′/uτ = 〈v2〉
1
2/uτ at the same Reynolds numbers.
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Figure 7.20: Mean velocity profiles in fully-developed turbulent pipe

flow. Symbols, experimental data of Zagarola and Smits (1997) at

six Reynolds numbers (Re≈ 32×103, 99×103, 409×103, 1.79×106,

7.71 × 106, 29.9 × 106). Solid line, log law with κ = 0.436 and

B = 6.13; dashed line, log law with κ = 0.41, B = 5.2.
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Figure 7.21: Mean velocity profiles in fully-developed turbulent pipe

flow. Symbols, experimental data of Zagarola and Smits (1997)

for y/R < 0.1, for the same values of Re as in Fig. 7.20. Line, log

law with κ = 0.436 and B = 6.13.
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Figure 7.25: Normalized velocity and shear stress profiles from the Bla-

sius solution for the zero-pressure-gradient laminar boundary layer

on a flat plate: y is normalized by δx ≡ x/Re
1
2
x = (xν/U0)

1
2 .
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Figure 7.26: Profiles of mean velocity, shear stress and intermittency

factor in a zero-pressure gradient turbulent boundary layer, Reθ =

8, 000. From the experimental data of Klebanoff (1954).
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Figure 7.27: Mean velocity profiles in wall units. Circles, boundary-

layer experiments of Klebanoff (1954), Reθ = 8, 000; dashed line,

boundary-layer DNS of Spalart (1988), Reθ = 1, 410; dot-dashed

line, channel flow DNS of Kim et al. (1987), Re = 13, 750; solid

line, van Driest’s law of the wall, Eqs. (7.144)–(7.145).
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Figure 7.28: Mean velocity profile in a turbulent boundary layer show-

ing the law of the wake. Symbols, experimental data of Kle-

banoff (1954); dashed line, log law (κ = 0.41, B = 5.2); dot-dashed

line, wake contribution Πw(y/δ)/κ (Π = 0.5); solid line, sum of

log law and wake contribution (Eq. 7.148).
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Figure 7.29: Velocity defect law. Symbols, experimental data of Kle-

banoff (1954); dashed line, log law; solid line, sum of log law and

wake contribution Πw(y/δ)/κ.
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Figure 7.30: Turbulent viscosity and mixing length deduced from

direct numerical simulations of a turbulent boundary layer

(Spalart 1988). Solid line, νT from DNS; dot-dash line, `m from

DNS; dashed line `m and νT according to van Driest’s specification

(Eq. 7.145).
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Figure 7.31: Log-log plot of mean velocity profiles in turbulent pipe

flow at six Reynolds number (from left to right: Re ≈ 32 × 103,

99×103, 409×103, 1.79×106, 7.71×106, 29.9×106). The scale for

u+ pertains to the lowest Reynolds number: subsequent profiles

are shifted down successively by a factor of 1.1. The range shown is

the overlap region, 50δν < y < 0.1R. Symbols, experimental data

of Zagarola and Smits (1997); dashed lines, log law with κ = 0.436

and B = 6.13; solid lines, power law (Eq. 7.157) with the power α

determined by the best fit to the data.
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Figure 7.32: Exponent α = 1/n (Eq. 7.158) in the power-law u+ =

C(y+)α = C(y+)1/n for pipe flow as a function of Reynolds num-

ber.
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Figure 7.33: Profiles of Reynolds stresses and kinetic energy normalized

by the friction velocity in a turbulent boundary layer at Reθ =

1, 410: (a) across the boundary layer (b) in the viscous near-wall

region. From the DNS data of Spalart (1988).
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Figure 7.34: Turbulent kinetic energy budget in a turbulent boundary

layer at Reθ = 1, 410: terms in Eq. (7.177) (a) normalized as

a function of y so that the sum of the squares of the terms is

unity (b) normalized by the viscous scales. From the DNS data of

Spalart (1988).
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Figure 7.35: Budget of 〈u2〉 in a turbulent boundary layer: conditions

and normalization are the same as in Fig. 7.34.
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Figure 7.36: Budget of 〈v2〉 in a turbulent boundary layer: conditions

and normalization are the same as in Fig. 7.34.
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Figure 7.37: Budget of 〈w2〉 in a turbulent boundary layer: conditions

and normalization are the same as in Fig. 7.34.
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Figure 7.38: Budget of−〈uv〉 in a turbulent boundary layer: conditions

and normalization are the same as in Fig. 7.34.
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Figure 7.39: Normalized dissipation components in a turbulent bound-

ary layer at Reθ = 1, 410: from the DNS data of Spalart (1988)

for which δ = 650δν.
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Figure 7.40: Dye streak in a turbulent boundary layer showing the

ejection of low-speed near-wall fluid. (From the experiment of

Kline et al. 1967.)
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Figure 7.42: Sketch of counter-rotating rolls in the near-wall region.

(From Holmes et al. 1996.)
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Figure 7.43: Sketch of counter-rotating rolls in the near-wall region.

(From Holmes et al. 1996.)
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Figure 7.44: The large-scale features of a turbulent boundary layer

at Reθ ≈ 4, 000. The irregular line—approximating the viscous

superlayer—is the boundary between smoke-filled turbulent fluid

and clear free-stream fluid. (From the experiment of Falco 1977.)
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